More results...

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
'}}

Real Life Examples of Cognitive Computing

Today, computers that previously only performed pre-programmed tasks are gaining the ability to automatically store information and use it for future activities.

In this regard, it is important to understand what cognitive computing is, a feature that uses intelligent computing systems to mimic some skills of the human brain, such as recognizing patterns and processing languages.

What are Cognitive Computing and its importance?

Cognitive computing, the study made from the functions of the human brain and the mechanisms of computer science, to develop technological systems able to acquire knowledge through the experiences and information received.

Key Benefits of Cognitive Computing include:

  • Improves the current level of efficiency by accelerating decision making
  • Scales process quantum quickly and consistently
  • Accelerates performance by capturing real-world knowledge
  • Contributes massive reforms to existing business practices that are error-prone or inefficient

It aims to automate and streamline processes, enabling them to further reduce costs and provide better customer experience. This is because the cognitive system is capable of absorbing information, processing it, and proposing paths from it.

Applications of Cognitive Computing

Considering a large amount of data and information that a company needs to manage and the care it must take to ensure that nothing is damaged, it is essential to adopt more effective analysis systems than traditional ones.

Thus, cognitive computing through data mining, language processing, and machine learning can be used to identify these risk points.

Risk assessment

To predict the vagueness involved in an investment, risk management in financial services includes the analyst going through historical data and market trends.

Cognitive computing helps to blend market trends and behavioural data to generate insights that can further be evaluated by senior analysts for predictions.

Fraud Detection

Fraud detection is basically a type of anomaly detection. The objective of this application is to determine transactions that seem to be unusual.

Nevertheless, this also requires programs to analyze past data to understand the parameters to use to judge a transaction.

To detect anomalies a variety of data analysis techniques such as decision tree, logistic regression, cluster, the random forest can be used.

Chatbots

When you chat with an autoresponder tool and it understands what you are demand is, knowing the needs of the user based on a previous communication, giving suggestions, etc.

even if you ask the same query in different ways, cognitive computing is being used. It enables chatbots to have a certain level of communication intelligence.

Cognitive Computing Examples: Use Cases

Cognitive Computing in Insurance

Cognitive computing in the insurance industry is helping insurers reduce underwriting risks, insurance assessment inaccuracies, and reduce claims costs.

After all, the predictive capabilities of cognitive computing help to accurately estimate future claims amounts based on the financial arrangements that can be made.

For example, IBM Watson was deployed by USAA to check that a policy application deserved approval or needed to be denied in case if it was out of line with contemporary policies.

Cognitive Computing in Customer Service

Routine and uncertainty alternate wildly in the domain of customer service. Therefore, customer service agents need to stay current with product changes.

This, in addition to understanding the customer perspective and providing assistance without letting human inefficiencies get in the way.

At the same time, the cost must also be kept to a minimum to maintain the profitability of the business. For example, VentureBeat researched the world about popular chatbots and focused on some that were outperforming human customer service.

Cognitive Computing in Healthcare

Handwritten notes, long periods to identify disease symptoms, and lack of information remain primary causes that undermine the efficiency of health care professionals.

By offering insightful information via programmatic computing, cognitive computing can eradicate all these inefficiencies.

For example, researchers at the University of California, Los Angeles (UCLA) were able to quickly identify people with diabetes changes by mining thousands of patient records in digital format.

Data mining also revealed patterns that helped identify the chances of previously unknown disease patterns.


You may also like to read:

Is Self Thinking AI Possible and What can be its implications?
RPA vs. BPM: Complete Difference Explained

Tags:


Related Blogs

Subscribe

Subscribe to our newsletter and receive notifications for Free!



    Sign up to stay tuned and to be notified about new releases and blogs directly in your inbox. We hate spam too, unsubscribe at any time! Click here for Privacy Policy.


    WisdomPlexus publishes market-specific content on behalf of our clients, with our capabilities and extensive experience in the industry we assure them with high quality and economical business solutions designed, produced, and developed specifically for their needs.

    Follow Us On


    © Copyright - 2024.

    Scroll to Top